Have something to say?

Tell us how we could make the product more useful to you. 😊

Help us improve now! Book a quick chat to share your experience and shape future updates.
https://calendly.com/pageon/pageon-talk

Pinned

Bug Report: 3D Block / Three.js Sandbox Not Rendering Properly

Hi Pageon Team, I’ve been enjoying using Pageon.ai for creating presentations and UI — great tool! However, I noticed that the 3D block or sandbox feature (likely powered by Three.js) isn’t rendering properly on my end. It either fails to load entirely or displays incorrectly, making it difficult to work with 3D elements. Details: Issue: 3D block not rendering or behaving as expected. Browser: Tried on Brave and Chrome Device: Windows 11 home Steps to Reproduce: Open a project, add a 3d block Ask the AI to create for eg a “3d block for shoe” Attempt to interact with or preview the 3D content. Observe rendering issues or blank output. Let me know if I can provide console logs or help reproduce the bug further. Looking forward to a fix — this feature has a lot of potential! Best, Baivab

Baivab Dutta 22 days ago

2

🐛 Bug Reports

# IKKILANGAN VA ODDIY QATLAM POTENSIALI ## MUNDARIJA - [KIRISH](#kirish) - [ASOSIY QISM](#asosiy-qism) - [1. Oddiy va ikkilangan qatlam potensiallari. Hajm potensiali](#1-oddiy-va-ikkilangan-qatlam-potensiallari-hajm-potensiali) - [2. Sirt potensiallari](#2-sirt-potensiallari) - [3. Oddiy qatlam potensialining uzluksizligi](#3-oddiy-qatlam-potensialining-uzluksizligi) - [4. Ikkilangan qatlam potensialining uzilishi. Gauss integrali. Teles burchak](#4-ikkilangan-qatlam-potensialining-uzilishi-gauss-integrali-teles-burchak) - [XULOSA](#xulosa) - [FOYDALANILGAN ADABIYOTLAR](#foydalanilgan-adabiyotlar) ## KIRISH Elektrostatik maydon va uning xususiyatlarini o'rganish fizikaning eng muhim sohalaridan biri hisoblanadi. Zamonaviy fanlar va texnologiyalarning turli sohalarida elektrostatik maydon nazariyasi keng qo'llaniladi. Ayniqsa, elektrodinamika, elektrotexnika, elektronika, optika, tibbiyot texnologiyalari, radioaloqa tizimlarida va boshqa ko'plab sohalarda elektrostatik maydon nazariyasining asosiy prinsiplari muhim ahamiyatga ega. Elektrostatik maydon nazariyasidagi muhim tushunchalardan biri - bu elektrostatik potensialdir. Elektrostatik potensial maydonning har bir nuqtasidagi energetik tavsifini ko'rsatib beradi va elektr maydon kuchlanganligining potensial funksiyasi sifatida qaraladi. Elektrostatik potensial tushunchasi orqali maydon xususiyatlarini o'rganish va tahlil qilish ancha qulaydir. Elektrostatik maydon nazariyasida oddiy va ikkilangan qatlam potensiallari alohida o'rinni egallaydi. Ushbu potensiallar yordamida elektrostatik maydonning chegaraviy masalalarini hal qilish, turli elektr tizimlarni modellashtirish va boshqa amaliy masalalarni yechish mumkin. Oddiy qatlam potensiali zaryadlangan sirtda joylashgan elektr zaryadlarining potensialini tavsiflab bersa, ikkilangan qatlam potensiali esa bir-biriga juda yaqin joylashgan qarama-qarshi zaryadlangan qatlamlar hosil qilgan elektrostatik potensialdir. Ushbu kurs ishining maqsadi oddiy va ikkilangan qatlam potensiallarini o'rganish, ularning matematik ifodalari, xususiyatlari, qo'llanilish sohalari va amaliy ahamiyatini tahlil qilishdan iborat. Kurs ishida hajm potensiallari, sirt potensiallari, oddiy qatlam potensialining uzluksizligi va ikkilangan qatlam potensialining uzilish xususiyatlari, shuningdek Gauss integrali va teles burchak tushunchalari batafsil ko'rib chiqiladi. Mavzuning dolzarbligi shundaki, hozirgi kunda turli texnologik jarayonlar va qurilmalarda elektrostatik maydon nazariyasi prinsiplari keng qo'llanilmoqda. Oddiy va ikkilangan qatlam potensiallarining xususiyatlarini bilish turli elektrodinamik masalalarni yechishda muhim ahamiyat kasb etadi. Shuningdek, bu nazariyalar asosida bir qator zamonaviy texnologiyalar rivojlantirilmoqda. Kurs ishining vazifalari quyidagilardan iborat: - Oddiy va ikkilangan qatlam potensiallarining nazariy asoslarini o'rganish; - Hajm va sirt potensiallarining matematik ifodalari va ularning xususiyatlarini tahlil qilish; - Oddiy qatlam potensialining uzluksizligi va ikkilangan qatlam potensialining uzilish xususiyatlarini o'rganish; - Gauss integrali va teles burchak tushunchalarini tahlil qilish; - Oddiy va ikkilangan qatlam potensiallarining amaliy qo'llanilish sohalarini ko'rib chiqish. ## ASOSIY QISM ### 1. Oddiy va ikkilangan qatlam potensiallari. Hajm potensiali Elektrostatik maydon nazariyasida potensial tushunchasi markaziy o'rinni egallaydi. Elektrostatik potensial - bu elektr maydonning energetik tavsifi bo'lib, fazoning har bir nuqtasida maydon kuchlanganligining potensial funksiyasi sifatida aniqlanadi: $$\vec{E} = -\nabla \varphi$$ bu yerda $\vec{E}$ - elektr maydon kuchlanganligi, $\varphi$ - elektrostatik potensial, $\nabla$ - nabla operatori (gradient). Elektrostatik potensial Puasson tenglamasiga bo'ysunadi: $$\nabla^2 \varphi = -\frac{\rho}{\varepsilon_0}$$ bu yerda $\nabla^2$ - Laplas operatori, $\rho$ - elektr zaryadlar zichligi, $\varepsilon_0$ - vakuumning elektr doimiysi. Zaryadlar bo'lmagan fazoda ($\rho = 0$) Puasson tenglamasi Laplas tenglamasiga aylanadi: $$\nabla^2 \varphi = 0$$ Elektrostatik maydon potensiali, zaryadlar taqsimlanishiga qarab, turli ko'rinishlarda bo'lishi mumkin. Zaryadlarning taqsimlanishiga ko'ra quyidagi potensiallar farqlanadi: 1. Nuqtaviy zaryad potensiali 2. Hajmiy zaryadlar potensiali (hajm potensiali) 3. Sirtiy zaryadlar potensiali (sirt potensiali) Nuqtaviy zaryad $q$ ning potensiali quyidagi formula bilan aniqlanadi: $$\varphi(\vec{r}) = \frac{1}{4\pi\varepsilon_0} \frac{q}{|\vec{r} - \vec{r_0}|}$$ bu yerda $\vec{r}$ - kuzatish nuqtasi koordinatasi, $\vec{r_0}$ - zaryad joylashgan nuqta koordinatasi. Hajm bo'yicha taqsimlangan zaryadlarning potensiali (hajm potensiali) quyidagi integral bilan aniqlanadi: $$\varphi(\vec{r}) = \frac{1}{4\pi\varepsilon_0} \int_{V} \frac{\rho(\vec{r'})}{|\vec{r} - \vec{r'}|} dV'$$ bu yerda $\rho(\vec{r'})$ - zaryadlar zichligi funksiyasi, $V$ - zaryadlar egallagan hajm. Hajm potensiali Puasson tenglamasining yechimi bo'lib, elektrostatik maydon nazariyasida muhim ahamiyatga ega. Bu potensial hajm bo'yicha taqsimlangan barcha zaryadlarning umumiy ta'sirini aks ettiradi. Hajm potensialining muhim xususiyatlaridan biri - bu uning fazoning barcha nuqtalarida uzluksiz va differensiallanuvchi funksiya ekanligidir. Bu xususiyat elektrostatik maydon nazariyasida ko'p masalalarni yechishda qo'l keladi. Oddiy qatlam potensiali deb sirt bo'ylab taqsimlangan zaryadlar hosil qilgan potensialga aytiladi. Oddiy qatlam potensiali quyidagicha aniqlanadi: $$\varphi(\vec{r}) = \frac{1}{4\pi\varepsilon_0} \int_{S} \frac{\sigma(\vec{r'})}{|\vec{r} - \vec{r'}|} dS'$$ bu yerda $\sigma(\vec{r'})$ - sirt zaryadlari zichligi, $S$ - zaryadlangan sirt. Ikkilangan qatlam potensiali esa bir-biriga juda yaqin joylashgan qarama-qarshi zaryadlar qatlami hosil qilgan potensialdir. Elektrostatikada ikkilangan qatlam deb, qarama-qarshi ishorali zaryadlarning juda yaqin joylashgan juftligiga aytiladi. Ikkilangan qatlam potensiali quyidagi formula bilan aniqlanadi: $$\varphi(\vec{r}) = \frac{1}{4\pi\varepsilon_0} \int_{S} \mu(\vec{r'}) \frac{\partial}{\partial n'} \left(\frac{1}{|\vec{r} - \vec{r'}|}\right) dS'$$ bu yerda $\mu(\vec{r'})$ - ikkilangan qatlam zichligi, $\frac{\partial}{\partial n'}$ - sirtga normal bo'yicha hosilasi. Ikkilangan qatlam potensiali sirt bo'ylab elektr dipollari taqsimlanishining potensiali sifatida ham qaralishi mumkin. Har bir dipolning momenti $\vec{p} = q\vec{d}$ ko'rinishda bo'lib, bu yerda $q$ - zaryadlar qiymati, $\vec{d}$ - dipol yelkasi vektori. Ikkilangan qatlam potensiali oddiy qatlam potensialidan farqli o'laroq, sirtdan o'tishda uzilish xususiyatiga ega. Bu xususiyat elektrostatik masalalarni yechishda, ayniqsa chegaraviy masalalarni hal qilishda muhim ahamiyatga ega. ### 2. Sirt potensiallari Sirt potensiallari elektrostatik maydonning zaryadlangan sirtlar bilan bog'liq masalalarini o'rganishda muhim o'rin tutadi. Sirt potensiallari oddiy qatlam potensiali va ikkilangan qatlam potensialini o'z ichiga oladi. Oddiy qatlam potensiali, yuqorida aytib o'tilganidek, sirt bo'ylab taqsimlangan zaryadlar hosil qilgan potensialdir: $$\varphi_s(\vec{r}) = \frac{1}{4\pi\varepsilon_0} \int_{S} \frac{\sigma(\vec{r'})}{|\vec{r} - \vec{r'}|} dS'$$ Oddiy qatlam potensiali sirtning har ikki tomonida ham uzluksiz bo'ladi, lekin uning normal bo'yicha hosilasi sirtdan o'tganda uzilishga ega bo'ladi. Bu uzilish quyidagi formula bilan aniqlanadi: $$\left( \frac{\partial \varphi_s}{\partial n} \right)_{+} - \left( \frac{\partial \varphi_s}{\partial n} \right)_{-} = -\frac{\sigma}{\varepsilon_0}$$ bu yerda $(+)$ va $(-)$ indekslari sirtning mos ravishda tashqi va ichki tomonlarini bildiradi. Ikkilangan qatlam potensiali esa sirt bo'ylab taqsimlangan elektr dipollari hosil qilgan potensialdir: $$\varphi_d(\vec{r}) = \frac{1}{4\pi\varepsilon_0} \int_{S} \mu(\vec{r'}) \frac{\partial}{\partial n'} \left(\frac{1}{|\vec{r} - \vec{r'}|}\right) dS'$$ bu yerda $\mu(\vec{r'})$ - ikkilangan qatlam zichligi. Ikkilangan qatlam zichligi dipol momentining normal komponentasi bilan bog'liq: $\mu = p_n = \vec{p} \cdot \vec{n}$, bu yerda $\vec{n}$ - sirt normali. Ikkilangan qatlam potensialining muhim xususiyatlaridan biri shundaki, u sirtdan o'tganda sakrash hosil qiladi (uzilishga ega bo'ladi). Bu sakrash quyidagi formula bilan aniqlanadi: $$\varphi_d^{+}(\vec{r_0}) - \varphi_d^{-}(\vec{r_0}) = \frac{\mu(\vec{r_0})}{\varepsilon_0}$$ bu yerda $\varphi_d^{+}$ va $\varphi_d^{-}$ - ikkilangan qatlam potensialining sirtning mos ravishda tashqi va ichki tomonlaridagi qiymatlari, $\vec{r_0}$ - sirtdagi nuqta. Sirt potensiallarining yana bir muhim xususiyati - ularning yordamida Dirixle va Neyman masalalarini yechish mumkinligi. Dirixle masalasida potensialning sirtdagi qiymatlari berilgan bo'lsa, Neyman masalasida potensialning normal bo'yicha hosilasi berilgan bo'ladi. Oddiy qatlam potensiali asosan Dirixle masalasini yechishda qo'llaniladi, chunki u sirtda uzluksiz bo'ladi. Ikkilangan qatlam potensiali esa Neyman masalasini yechishda samarali, chunki uning normal bo'yicha hosilasi sirtda uzluksiz bo'ladi. Sirt potensiallarining amaliy qo'llanilishlariga quyidagilarni misol qilish mumkin: 1. Elektrostatik ekranlash masalalari; 2. Elektrostatik maydonni hisoblash va modellashtirish; 3. Chegaraviy masalalarni yechish; 4. Elektr sig'imni hisoblash; 5. Elektr maydon kuchlanganligini hisoblash. Zamonaviy elektromagnetizm va elektrodinamikada sirt potensiallari nazariyasi keng qo'llaniladi, jumladan, elektr qurilmalarni loyihalashda, antennalar nazariyasida, radioto'lqinlarning tarqalishini o'rganishda va boshqa sohalarda. ### 3. Oddiy qatlam potensialining uzluksizligi Oddiy qatlam potensiali elektrostatik maydon nazariyasida alohida o'rin tutadi. Uning eng muhim xususiyatlaridan biri - bu uzluksizlik xususiyatidir. Oddiy qatlam potensiali quyidagi formula bilan aniqlanadi: $$\varphi_s(\vec{r}) = \frac{1}{4\pi\varepsilon_0} \int_{S} \frac{\sigma(\vec{r'})}{|\vec{r} - \vec{r'}|} dS'$$ Oddiy qatlam potensiali zaryadlangan sirtning har ikki tomonida ham uzluksiz funksiya hisoblanadi. Bu xususiyat quyidagi teorema bilan tasdiqlanadi: **Teorema:** Agar sirt zaryadlarining zichligi $\sigma(\vec{r})$ uzluksiz funksiya bo'lsa, unda oddiy qatlam potensiali $\varphi_s(\vec{r})$ fazoning barcha nuqtalarida, shu jumladan zaryadlangan sirtning o'zida ham uzluksiz funksiya bo'ladi. Bu teoremani isbotlash uchun, kuzatish nuqtasi sirtga yaqinlashganda oddiy qatlam potensialining chegaraviy qiymatini hisoblaymiz. Sirtdagi $\vec{r_0}$ nuqtaga sirtning tashqi va ichki tomonlaridan yaqinlashganda, oddiy qatlam potensialining qiymatlari bir xil bo'ladi: $$\lim_{\vec{r} \to \vec{r_0}^{+}} \varphi_s(\vec{r}) = \lim_{\vec{r} \to \vec{r_0}^{-}} \varphi_s(\vec{r}) = \varphi_s(\vec{r_0})$$ bu yerda $(+)$ va $(-)$ indekslari sirtning mos ravishda tashqi va ichki tomonlaridan yaqinlashishni bildiradi. Oddiy qatlam potensialining sirtdagi qiymati quyidagicha aniqlanadi: $$\varphi_s(\vec{r_0}) = \frac{1}{4\pi\varepsilon_0} \int_{S} \frac{\sigma(\vec{r'})}{|\vec{r_0} - \vec{r'}|} dS'$$ Oddiy qatlam potensialining uzluksizligi sirtdan o'tishda potensialning qiymati o'zgarmasligini anglatadi: $$\varphi_s^{+}(\vec{r_0}) = \varphi_s^{-}(\vec{r_0}) = \varphi_s(\vec{r_0})$$ bu yerda $\varphi_s^{+}$ va $\varphi_s^{-}$ - oddiy qatlam potensialining sirtning mos ravishda tashqi va ichki tomonlaridagi qiymatlari. Oddiy qatlam potensialining uzluksizligi elektrostatik maydon nazariyasida muhim ahamiyatga ega. Bu xususiyat Dirixle masalasini yechishda, ya'ni potensialning sirtdagi qiymatlarini topishda keng qo'llaniladi. Biroq, oddiy qatlam potensialining normal bo'yicha hosilasi sirtdan o'tganda uzilishga ega bo'ladi. Bu uzilish quyidagi formula bilan aniqlanadi: $$\left( \frac{\partial \varphi_s}{\partial n} \right)_{+} - \left( \frac{\partial \varphi_s}{\partial n} \right)_{-} = -\frac{\sigma(\vec{r_0})}{\varepsilon_0}$$ bu yerda $\left( \frac{\partial \varphi_s}{\partial n} \right)_{+}$ va $\left( \frac{\partial \varphi_s}{\partial n} \right)_{-}$ - oddiy qatlam potensialining normal bo'yicha hosilasining sirtning mos ravishda tashqi va ichki tomonlaridagi qiymatlari, $\sigma(\vec{r_0})$ - sirtdagi $\vec{r_0}$ nuqtadagi zaryad zichligi. Bu uzilish elektrostatik maydon kuchlanganligining tangens komponentasi uzluksiz, normal komponentasi esa uzilishga ega bo'lishi bilan bog'liq. Elektr maydon kuchlanganligi potensialning gradientiga teng bo'lgani uchun: $$\vec{E} = -\nabla \varphi_s$$ normal bo'yicha komponentasi: $$E_n = -\frac{\partial \varphi_s}{\partial n}$$ Oddiy qatlam potensialining uzluksizligi va uning normal hosilasining uzilishi elektrostatik chegaraviy masalalarni yechishda muhim rol o'ynaydi. Ayniqsa, ikki muhitning chegaraviy sirtida elektr maydon va potensialning uzluksizlik shartlarini o'rnatishda bu xususiyatlar asosiy o'rinni egallaydi. ### 4. Ikkilangan qatlam potensialining uzilishi. Gauss integrali. Teles burchak Ikkilangan qatlam potensiali oddiy qatlam potensialidan farqli ravishda sirtdan o'tganda uzilish (sakrash) xususiyatiga ega. Bu xususiyat ikkilangan qatlam potensialining nazariyasi va amaliy qo'llanilishida muhim rol o'ynaydi. Ikkilangan qatlam potensiali quyidagi formula bilan aniqlanadi: $$\varphi_d(\vec{r}) = \frac{1}{4\pi\varepsilon_0} \int_{S} \mu(\vec{r'}) \frac{\partial}{\partial n'} \left(\frac{1}{|\vec{r} - \vec{r'}|}\right) dS'$$ bu yerda $\mu(\vec{r'})$ - ikkilangan qatlam zichligi. Ikkilangan qatlam potensialining uzilish teoremasini ko'rib chiqamiz: **Teorema:** Agar ikkilangan qatlam zichligi $\mu(\vec{r})$ uzluksiz funksiya bo'lsa, unda ikkilangan qatlam potensiali sirtdan o'tganda uzilishga ega bo'ladi va bu uzilish quyidagi formula bilan aniqlanadi: $$\varphi_d^{+}(\vec{r_0}) - \varphi_d^{-}(\vec{r_0}) = \frac{\mu(\vec{r_0})}{\varepsilon_0}$$ bu yerda $\varphi_d^{+}$ va $\varphi_d^{-}$ - ikkilangan qatlam potensialining sirtning mos ravishda tashqi va ichki tomonlaridagi qiymatlari, $\vec{r_0}$ - sirtdagi nuqta. Ikkilangan qatlam potensialining uzilishi sirtdagi nuqtada quyidagicha ifodalanadi: $$\varphi_d^{+}(\vec{r_0}) = \frac{1}{4\pi\varepsilon_0} \int_{S} \mu(\vec{r'}) \frac{\partial}{\partial n'} \left(\frac{1}{|\vec{r_0} - \vec{r'}|}\right) dS' + \frac{\mu(\vec{r_0})}{2\varepsilon_0}$$ $$\varphi_d^{-}(\vec{r_0}) = \frac{1}{4\pi\varepsilon_0} \int_{S} \mu(\vec{r'}) \frac{\partial}{\partial n'} \left(\frac{1}{|\vec{r_0} - \vec{r'}|}\right) dS' - \frac{\mu(\vec{r_0})}{2\varepsilon_0}$$ Ikkilangan qatlam potensialining uzilish xususiyati Gauss integrali va teles burchak tushunchalari bilan bog'liq. Gauss integrali elektrostatik maydon nazariyasida muhim o'rin tutadi va quyidagi ko'rinishda yoziladi: $$\oint_{S} \vec{E} \cdot d\vec{S} = \frac{Q}{\varepsilon_0}$$ bu yerda $\vec{E}$ - elektr maydon kuchlanganligi, $d\vec{S}$ - sirt elementi, $Q$ - sirt ichidagi zaryadlar yig'indisi. Gauss integrali elektr maydon oqimini sirt bo'yicha integrallash orqali sirt ichidagi zaryadlarni aniqlash imkonini beradi. Bu integraldan maydon kuchlanganligini hisoblashda keng foydalaniladi. Teles burchak esa fazoviy geometriyada muhim tushuncha hisoblanadi. Fazoda nuqtadan turli yo'nalishlarda chiquvchi va berilgan sirtni kesib o'tuvchi nurlar hosil qilgan fazoviy burchakka teles burchak deyiladi. Teles burchak steradianlarda o'lchanadi va quyidagi formula bilan aniqlanadi: $$\Omega = \int_{S} \frac{\vec{r} \cdot d\vec{S}}{r^3}$$ bu yerda $\vec{r}$ - kuzatish nuqtasidan sirt elementigacha bo'lgan radius-vektor, $d\vec{S}$ - sirt elementi. Yopiq sirt uchun teles burchak $4\pi$ steradianga teng. Agar kuzatish nuqtasi sirtning ichida bo'lsa, teles burchak $4\pi$ steradianga teng, agar tashqarida bo'lsa - 0 ga teng, agar sirtning o'zida bo'lsa - $2\pi$ steradianga teng. Ikkilangan qatlam potensialining uzilishi teles burchak orqali ham ifodalanishi mumkin: $$\varphi_d^{+}(\vec{r_0}) - \varphi_d^{-}(\vec{r_0}) = \mu(\vec{r_0}) \cdot \Omega$$ Bu yerda $\Omega = 4\pi$ steradianga teng, chunki yopiq sirt uchun teles burchak $4\pi$ steradianga teng. Ikkilangan qatlam potensialining uzilish xususiyati elektrostatik maydon nazariyasidagi Neyman masalasini yechishda samarali qo'llaniladi. Neyman masalasida potensialning normal bo'yicha hosilasi berilgan bo'ladi va bu masalani yechish uchun ikkilangan qatlam potensialidan foydalanish maqsadga muvofiqdir. Gauss integrali va teles burchak tushunchalari nafaqat elektrostatikada, balki elektrodinamika, maydon nazariyasi, vektor analiz kabi boshqa sohalarda ham keng qo'llaniladi. Bu tushunchalar elektromagnit maydon nazariyasining matematik apparatida muhim o'rin tutadi. ## XULOSA Ushbu kurs ishida oddiy va ikkilangan qatlam potensiallari, ularning xususiyatlari va amaliy qo'llanilishlari batafsil o'rganildi. Elektrostatik maydon nazariyasidagi bu potensiallar elektromagnit maydonlar, chegaraviy masalalar va boshqa fizik hodisalarni o'rganishda muhim ahamiyatga ega ekanligi ko'rsatildi. Oddiy qatlam potensiali sirt bo'ylab taqsimlangan zaryadlar hosil qilgan potensial bo'lib, u sirtning har ikki tomonida ham uzluksiz funksiya hisoblanadi. Biroq, uning normal bo'yicha hosilasi sirtdan o'tganda uzilishga ega bo'ladi. Bu uzilish sirt zaryadlari zichligi bilan bog'liq. Ikkilangan qatlam potensiali esa bir-biriga juda yaqin joylashgan qarama-qarshi zaryadlar qatlami hosil qilgan potensialdir. Ikkilangan qatlam potensialining eng muhim xususiyati - uning sirtdan o'tganda uzilishga ega bo'lishidir. Bu uzilish ikkilangan qatlam zichligi bilan bog'liq. Hajm potensiali hajm bo'yicha taqsimlangan zaryadlar hosil qilgan potensial bo'lib, u fazoning barcha nuqtalarida uzluksiz va differensiallanuvchi funksiya hisoblanadi. Hajm potensiali Puasson tenglamasining yechimi hisoblanadi. Sirt potensiallari elektrostatik maydonning zaryadlangan sirtlar bilan bog'liq masalalarini o'rganishda muhim o'rin tutadi. Ular yordamida Dirixle va Neyman masalalarini yechish mumkin. Oddiy qatlam potensiali asosan Dirixle masalasini yechishda, ikkilangan qatlam potensiali esa Neyman masalasini yechishda samarali qo'llaniladi. Gauss integrali va teles burchak tushunchalari elektrostatik maydon nazariyasida muhim ahamiyatga ega. Gauss integrali elektr maydon oqimini sirt bo'yicha integrallash orqali sirt ichidagi zaryadlarni aniqlash imkonini beradi. Teles burchak esa fazoviy geometriyada muhim tushuncha hisoblanib, ikkilangan qatlam potensialining uzilish xususiyatini tushuntirishda qo'l keladi. Oddiy va ikkilangan qatlam potensiallari elektrostatik maydon nazariyasida muhim rol o'ynaydi va turli sohalarda, jumladan, elektr qurilmalarni loyihalashda, antennalar nazariyasida, radioto'lqinlarning tarqalishini o'rganishda keng qo'llaniladi. Bu potensiallarning xususiyatlarini bilish va ularni amalda qo'llay olish elektromagnit maydonlar nazariyasini chuqur o'rganishda muhim ahamiyatga ega. Ushbu kurs ishi orqali elektrostatik maydon nazariyasining asosiy tushunchalari, jumladan oddiy va ikkilangan qatlam potensiallari, ularning matematik ifodasi, xususiyatlari va amaliy qo'llanilishlari chuqur o'rganildi. Oddiy qatlam potensialining uzluksizligi va ikkilangan qatlam potensialining uzilish xususiyatlari batafsil tahlil qilindi. Shuningdek, Gauss integrali va teles burchak tushunchalari, ularning elektrostatik nazariyadagi o'rni va ahamiyati ko'rib chiqildi. Kelajakda bu sohani yanada rivojlantirish uchun quyidagi yo'nalishlarni ko'rib chiqish maqsadga muvofiq deb hisoblaymiz: 1. Oddiy va ikkilangan qatlam potensiallarining zamonaviy texnologiyalardagi qo'llanilishlarini kengaytirish; 2. Potensiallar nazariyasi asosida yangi elektr qurilmalarni ishlab chiqish; 3. Elektrostatik maydon nazariyasi tamoyillarini zamonaviy axborot texnologiyalarida qo'llash imkoniyatlarini izlash; 4. Oddiy va ikkilangan qatlam potensiallarining raqamli modellashtirish usullarini takomillashtirish. Xulosa qilib aytganda, oddiy va ikkilangan qatlam potensiallari nazariyasi elektrostatik maydon nazariyasining muhim qismini tashkil etib, elektrodinamika, elektrotexnika, elektronika kabi ko'plab sohalarda keng qo'llaniladi. Bu nazariyani chuqur o'zlashtirish zamonaviy fizika va muhandislik sohalarida muhim ahamiyatga ega.

An Anonymous User About 2 hours ago

💡 Share Your Ideas

🎤 Slide 1 - Title Hello everyone. Today I'm presenting my project entitled "My faith, my choice: The importance of religion in my life and education". My name is Yan Owen Bimenyimana, and I'm going to share with you why religion is important to me, and what this course has taught me. 🎤 Slide 2 - Pedagogical objective The aim of this project is to reflect personally on the role religion plays in my life. It helps me better understand how it influences my values, my decisions, my relationships, and my way of thinking. It's also a way of justifying why I chose this course and what I'm learning. 🎤 Slide 3 - Duration and progress This project took place over about two weeks. We started with some personal reflection, then did some research, then created this presentation. Today, I'm presenting it to you, and at the end, there will be an evaluation with feedback from everyone. 🎤 Slide 4 - Personal reflection (Step 1) For me, religion represents my connection with God and a guide for life. It teaches me values like respect, peace, discipline and faith. I chose this course because it gives me a better understanding of who I am, where I come from and what I believe. It also gives me answers to life's big questions. 🎤 Slide 5 - Three influences of religion (Step 2 - part 1) Religion influences my life in several ways. First, morally: it helps me distinguish between right and wrong. Secondly, on a community level: it connects me to other believers, to my family, to my roots. And finally, spiritually: it gives me inner peace, especially when I'm praying or going through difficult times. 🎤 Slide 6 - Inspirational quotes and figure (Step 2 - part 2) Here are three religious quotes that inspire me: "Thou shalt love thy neighbor as thyself" (Matthew 22:39) → It teaches me love and respect for others. "I can do all things through him who strengthens me" (Philippians 4:13) → It gives me courage when I doubt. "Blessed are the peacemakers, for they shall be called sons of God" (Matthew 5:9) → She urges me to be a peacemaker. One person who inspires me a lot is my grandmother. She's very religious, she prays every day, she helps others, and she always keeps the faith, even in difficult times. 🎤 Slide 7 - Creating the presentation I chose to make this presentation in PowerPoint because it's a clear format and I can put everything I've learned into it. I tried to be as sincere as possible and show the real impact of religion on my life. 🎤 Slide 8 - Personal conclusion In conclusion, this religious education course is helping me to grow. It...

🎤 Slide 1 - Title Hello everyone. Today, I'd like to present my project entitled "My faith, my choice: 🎤 Slide 1 - Title Hello everyone. Today I'm presenting my project entitled "My faith, my choice: The importance of religion in my life and education". My name is Yan Owen Bimenyimana, and I'm going to share with you why religion is important to me, and what this course has taught me. 🎤 Slide 2 - Pedagogical objective The aim of this project is to reflect personally on the role religion plays in my life. It helps me better understand how it influences my values, my decisions, my relationships, and my way of thinking. It's also a way of justifying why I chose this course and what I'm learning. 🎤 Slide 3 - Duration and progress This project took about two weeks to complete. We started with some personal reflection, then did some research, then created this presentation. Today, I'm presenting it to you, and at the end, there will be an evaluation with feedback from everyone. 🎤 Slide 4 - Personal reflection (Step 1) For me, religion represents my connection with God and a guide to life. It teaches me values like respect, peace, discipline and faith. I chose this course because it gives me a better understanding of who I am, where I come from and what I believe. It also gives me answers to life's big questions. 🎤 Slide 5 - Three influences of religion (Step 2 - part 1) Religion influences my life in several ways. First, morally: it helps me distinguish between right and wrong. Secondly, on a community level: it connects me to other believers, to my family, to my roots. And finally, spiritually: it gives me inner peace, especially when I'm praying or going through difficult times. 🎤 Slide 6 - Quotes and inspirational figures (Step 2 - part 2) Here are three religious quotes that inspire me: "Thou shalt love thy neighbor as thyself" (Matthew 22:39) → It teaches me love and respect for others....

Yan Owen Bimenyimana élève About 12 hours ago

1

💡 Share Your Ideas

Iaw exam plan

The program for Azmoun Markaz and Clay Quds Force in Ruz Bist and Kim Azerbaijan Chaharsadu Chahar Makhzawam, as the first day of Khordadah to Ruz Pengchenbeh the program begins, in the form of a hefty program that will be heated and all the lessons will be studied in a hefty amount, for example, ten hours a day, one hour a day, one hour a day The morning is from one hour of the morning to one hour of the afternoon and the afternoon is from one hour of the afternoon to three hours of the afternoon, for example, the morning is from one hour of the morning to one hour of the morning and one hour of the afternoon and one hour of the morning and one hour of the afternoon, the afternoon is the same way, so do not forget to rest within the program and hours of Framoosh.

طهمورث نوروزی 3 days ago

1

📥 Feedback